Pseudoadditive States on a Logic

Radko Mesiar¹

Received April 30, 1993

We propose an extension of the notion of a state on a logic to a pseudoadditive state on a logic replacing the ordinary addition by a pseudoaddition. As a special class we underline the possibility states based on the operation of supremum. For a Boolean algebra **B** and a logic **L**, we study the extension of the pseudoadditive states on **B** and **L** to a pseudoadditive state on their Pták sum **B** + **L**.

1. INTRODUCTION

In classical measure theory there are several approaches to generalizing the notion of a measure based on replacing the usual addition on the real line by some other "reasonable" binary operation. Let us call this operation a pseudoaddition. If one restricts consideration to the generalizations of a probability measure, it is enough to deal with the pseudoaddition on the unit interval [0, 1]. For the building up of an integration theory, it is necessary to introduce another binary operation, say a pseudomultiplication. The recent results on this topic include Weber (1984), Riečanová (1982), and Sugeno and Murofushi (1987). An interesting special case is the possibility theory based on the supremum \vee instead of the addition + (Zadeh, 1978). Similar ideas in the fuzzy set theory are developed in Klement and Weber (1991) and Butnariu and Klement (1991).

In quantum logic theory, probability measures on a logic represent states of a described physical system and therefore are called *states* on a logic. However, the nature of a physical system need not be additive. This encourages us to introduce the notion of a \oplus -state (pseudoadditive state), where \oplus is a pseudoaddition replacing the ordinary addition +. In particular, for $\oplus = \$ (i.e., \oplus is the supremum of reals), a \lor -state will be called a possibility state.

¹Slovak Technical University Bratislava, 813 68 Bratislava, Slovakia.

1933

Recently Pták (1986) introduced a logic \mathcal{L} containing (as an embedding) a given Boolean algebra **B** and a given logic **L**. \mathcal{L} is now called a Pták sum, $\mathcal{L} = \mathbf{B} + \mathbf{L}$. States on **B** and **L** induce the states on \mathcal{L} in a manner similar to the integration of a simple function in probability theory. An analogous problem for \oplus -states is studied in Section 3. The primary task here is to find a suitable pseudomultiplication \odot corresponding to \oplus . In general, no convenient \odot corresponding to a given \oplus may exist. For the possibility states, a suitable pseudomultiplication is, e.g., ^, i.e., the infimum of reals.

2. PSEUDOADDITIVE STATES

Let L be a quantum logic (Beltrametti and Cassinelli, 1981; Varadarajan, 1968) (or simply a logic), i.e., L is an orthomodular σ -orthocomplete orthoposet, i.e., a partially ordered set which contains the smallest element 0 and the greatest element 1, on which an orthocomplementation map $\perp: L \rightarrow L$ is defined so that the following conditions are fulfilled:

(i) $(a^{\perp})^{\perp} = a$ for any $a \in \mathbf{L}$ (idempotency).

(ii) For any $a, b \in \mathbf{L}$, $a \le b$, one has $b^{\perp} \le a^{\perp}$ (order reversing).

(iii) The greatest lower bound (meet) of a and a^{\perp} with respect to the given partial order, i.e., $a \wedge a^{\perp}$, exists in L for any $a \in L$ and $a \wedge a^{\perp} = 0$ (law of contradiction); similarly the least upper bound (join) $a \vee a^{\perp} = 1$ for any $a \in L$ (excluded middle law).

(iv) The join $\bigvee_n a_n$ exists in L for any sequence $\{a_n\} \subset L$ of pairwise orthogonal elements of L, i.e., $a_n \perp a_m$ (or equivalently $a_n \leq a_m^{\perp}$) whenever $n \neq m$ (σ -orthocompleteness condition).

(v) For any $a, b \in \mathbf{L}$, $a \le b$, one has $b = a \lor (a^{\perp} \land b) = a \lor (a \lor b^{\perp})^{\perp}$ (orthomodular identity).

Elements of a logic represent elementary statements about some physical system. A mapping s: $L \rightarrow [0, 1]$ representing the state of a physical system is therefore called a state on L if it fulfills the following:

(S1)
$$\mathbf{s}(1) = 1$$

(S2) $\mathbf{s}(a \lor b) = \mathbf{s}(a) + \mathbf{s}(b)$ for any orthogonal $a, b \in \mathbf{L}$.

However, the nature of a physical system need not be additive. One possible way to overcome this is by replacing the ordinary addition + in (S2) by a pseudoaddition \oplus .

Definition 1. A binary operation \oplus on [0, 1] is called a pseudoaddition if it is continuous, nondecreasing in both components, associative, and x + 0 = 0 + x = x for any $x \in [0, 1]$.

Pseudoadditive States on a Logic

Note that the commutativity of a pseudoaddition follows from the above-stated axioms on \oplus due to results of Ling (1965). Further, any pseudoaddition \oplus is, in fact, a continuous *t*-conorm on [0, 1] (see, e.g., Schweizer and Sklar, 1983). The next theorem (Ling, 1965; Schweizer and Sklar, 1983) gives a full characterization of the structure of a pseudoaddition \oplus .

Theorem 1. Let \oplus be a pseudoaddition on [0, 1]. Then there is a system of pairwise disjoint open subintervals of the unit interval $\{]\alpha_k, \beta_k[, k \in K\}$ and a system of continuous strictly increasing functions $\{g_k, k \in K\}, g_k: [\alpha_k, \beta_k] \rightarrow [0, +\infty], g(\alpha_k) = 0$, so that for any $x, y \in [0, 1]$ one has

$$x \oplus y = \begin{cases} g_k^{-1}(\min\{g_k(x) + g_k(y); g_k(\beta_k)\}) & \text{if } x, y \in]\alpha_k, \beta_k[x, y] \\ x \neq y & \text{otherwise} \end{cases}$$

Recall that $x \downarrow y = \sup\{x; y\}$. The system $\{\langle]\alpha_k, \beta_k[; g_k \rangle, k \in K\} \approx \bigoplus$ is called a representation of \oplus . In the following example, we present the most applied pseudoadditions (*t*-conorms) on [0, 1].

Example 1. (a1) Strict pseudoaddition $\bigoplus \approx \{\langle]0, 1[; g \rangle\}$, where $g(1) = +\infty$. In this case, one has $x \oplus y = g^{-1}(g(x) + g(y))$ for any $x, y \in [0, 1]$. Put, e.g., $g(x) = -\log(1-x)$. Then

$$x \oplus y = 1 - (1 - x) \cdot (1 - y) = x + y - x \cdot y$$

i.e., \oplus is the *probabilistic sum*. Note that for a given strict pseudoaddition \oplus , the function g is called an additive generator of \oplus and it is unique up to a positive multiplicative constant.

(b1) Nilpotent pseudoaddition $\oplus \approx \{\langle]0, 1[; g \rangle\}$, where g(1) = 1. Note that it is enough to require g(1) to be finite; a positive multiplicative constant (i.e., if one takes $c \cdot g$ instead g) does not change the induced \oplus and hence one can always require g(1) = 1 in this case. Then, for a given nilpotent \oplus , g is unique. Take, e.g., g(x) = x. Then $x \oplus y = \min\{x + y, 1\}$, i.e., \oplus is the bounded sum.

(c1) The supremum $\$ is a pseudoaddition with empty representation. It can be obtained, e.g., as a limit pseudoaddition of a sequence of nilpotent pseudoadditions $\{\bigoplus_n\}$ with generators $g_n(x) = x^n$, $n \in \mathbb{N}$.

Definition 2. Let \oplus be a pseudoaddition on [0, 1] and let L be a logic. A mapping **m**: $\mathbf{L} \rightarrow [0, 1]$ will be called a \oplus -state (a pseudoadditive state) if it fulfills the following:

(PS1) $\mathbf{m}(1) = 1$ and $\mathbf{m}(0) = 0$ (PS2) $\mathbf{m}(a \lor b) = \mathbf{m}(a) \oplus \mathbf{m}(b)$ for any orthogonal $a, b \in \mathbf{L}$. Note that (PS2) does not imply $\mathbf{m}(\mathbf{0}) = 0$. If \mathbf{m} is not a constant mapping and if the only idempotents of \oplus are 0 and 1, then (PS2) implies $\mathbf{m}(\mathbf{0}) = 0$. This is, e.g., the case of strict and nilpotent pseudoadditions (these are often called Archimedean *t*-conorms). A negative example is \checkmark . Further, a classical state \mathbf{s} is a "bounded sum" state and vice versa, any "bounded sum" state \mathbf{m} is a classical state iff $\mathbf{m}(a) + \mathbf{m}(a^{\perp}) = 1$ for any $a \in \mathbf{L}$. There are four principal types of pseudoadditive states:

- (SS) \oplus -states with strict \oplus (strict states).
- (NSA) \oplus -states with nilpotent \oplus fulfilling $g(\mathbf{m}(a)) + g(\mathbf{m}(a^{\perp})) = 1$ for any $a \in \mathbf{L}$ (nilpotent states additive).
- (NSP) \oplus -states with nilpotent \oplus not included in (NSA), i.e., for some $a \in \mathbf{L}$ one has $g(\mathbf{m}(a)) + g(\mathbf{m}(a^{\perp})) > 1$ (nilpotent states pseudoadditive).
 - (PS) $_{\vee}$ -states (possibility states).

A similar classification of pseudoadditive measures (with respect to an Archimedean \oplus) was introduced in Weber (1984). Possibility states can be defined equivalently through (PS1) and (PS2*):

(PS2*) $\mathbf{m}(a \lor b) = \mathbf{m}(a) \lor \mathbf{m}(b)$ for any $a, b \in \mathbf{L}$.

Lemma 1. Any strict state is a transformation of a "probabilistic sum" state.

Proof. Let **m** be a \oplus -state where $x \oplus y = g^{-1}(g(x) + g(y))$, $g(1) = +\infty$. Put $\mathbf{m}_1 = h \circ \mathbf{m}$, where $h(x) = 1 - \exp(-g(x))$, $x \in [0, 1]$. Then \mathbf{m}_1 is a "probabilistic sum" state and $\mathbf{m} = h^{-1} \circ \mathbf{m}$.

Lemma 2. Any \oplus -state **m** of type (NSA) is a transformation of a classical state **s**.

Proof. Let g be the generator of \oplus [\oplus is nilpotent and hence g(1) = 1]. Put $\mathbf{s} = g \circ \mathbf{m}$. Then s is a "bounded sum" state of type (NSA) and hence it is a classical state. Further, $\mathbf{m} = g^{-1} \circ \mathbf{s}$.

Lemmas 1 and 2 are special cases of the following theorem.

Theorem 2. Let $h: \to [0, 1]$ be a strictly increasing bijection. Let \oplus be a pseudoaddition on [0, 1]. Then \bigoplus_h defined via $x \bigoplus_h y = h^{-1}(h(x) \oplus h(y))$, for $x, y \in [0, 1]$, is a pseudoaddition on [0, 1], too. Further, $\bigoplus_h = \bigoplus$ for any h iff $\bigoplus = \bigvee$. Let **m** be a \bigoplus -state on a logic **L**. Then $h \circ \mathbf{m}$ is a \bigoplus_h -state on **L** (of the same type as **m**). If **m** is a possibility state on **L**, then $h \circ \mathbf{m}$ is a possibility state on **L** for any h, too.

Example 2. Let $\mathbf{L} = (\Omega, \Delta)$ be a concrete logic and let $f: \Omega \to [0, 1]$ be any function such that $\sup\{f(\omega); \omega \in \Omega\} = 1$. Put $\Pi(a) = \sup_{\omega \in a} f(\omega)$ for all $a \in \mathbf{L}$. Then Π is a possibility state on \mathbf{L} .

1936

Pseudoadditive States on a Logic

Lemma 3. Let L be an atomic logic. A mapping $\Pi: L \to [0, 1]$ is a possibility state on L if and only if there is a mapping $f: A \to [0, 1]$, $\sup\{f(a); a \in A\} = 1$, where A is the system of all atoms of L.

Proof. It is enough to put $f(a) = \Pi(a)$, $a \in A$. Vice versa, for any $b \in L$, one has $\Pi(b) = \sup\{f(a); a \leq b, a \in A\}$.

Remark 1. If **m** is a two-valued pseudoadditive state on **L**, then it is a \oplus -state for any pseudoaddition \oplus , and vice versa. If **m** is an (NSA)-type pseudoadditive state for some nilpotent pseudoaddition, then it is two-valued iff it is both a classical state on **L** and a possibility state on **L**.

3. ⊕-STATES ON A PTÁK SUM

Let **B** be a Boolean algebra and let **L** be a logic. The Pták (1986) sum \mathscr{L} of **B** and **L**, $\mathscr{L} = \mathbf{B} + \mathbf{L}$, is a logic which may be viewed as a system of all possible *n*-tuples $p = ((a_1, b_1), \ldots, (a_n, b_n)), n \in \mathbb{N}$, where $a_i \in \mathbf{B}$ and $b_i \in \mathbf{L}$, $i = 1, 2, \ldots, n, a_1 \vee \cdots \vee a_n = \mathbf{1}_{\mathbf{B}}, a_1 \perp a_j$ whenever $i \neq j$. Recall that for $r = ((c_1, d_1), \ldots, (c_m, d_m)) \in \mathscr{L}$, one has

$$r \le p$$
 iff $d_i \le b_j$ whenever $c_i \land a_j \ne \mathbf{0}_{\mathbf{B}}$
 $r \perp p$ iff $d_i \perp b_j$ whenever $c_i \land a_j \ne \mathbf{0}_{\mathbf{B}}$
 $r \lor p = ((a_j \land c_i, b_j \lor d_i), i = 1, 2, \dots, m, j = 1, 2, \dots, n)$

The embeddings f_1 and f_2 , respectively, of **B** and **L**, respectively, into \mathscr{L} are the following:

$$f_1(a) = ((a, \mathbf{1}_L), (a^{\perp}, \mathbf{0}_L)) \quad \text{for} \quad a \in \mathbf{B}$$
$$f_2(b) = ((\mathbf{1}_B, b)) \quad \text{for} \quad b \in \mathbf{L}$$

For more details see Pták (1986) or Janiš and Riečanová (1992). Let $\mathbf{s}_1, \mathbf{s}_2$, respectively, be states on **B**, **L**, respectively. For any element $p \in \mathcal{L}$, put

$$\mathbf{s}(p) = \sum_{i=1}^{n} \mathbf{s}_{1}(a_{i}) \cdot \mathbf{s}_{2}(b_{i})$$

Then s is a state on \mathscr{L} and $\mathbf{s}_i = \mathbf{m} \circ f_i$, i = 1, 2.

In the following, we will extend the foregoing results on the Pták sum and the states to the case of pseudoadditive states. For a given pseudoaddition \oplus , let \mathbf{m}_1 be a \oplus -state on \mathbf{B} and let \mathbf{m}_2 be a \oplus -state on \mathbf{L} . Under which conditions is there a \oplus -state \mathbf{m} on \mathscr{L} so that $\mathbf{m}_i = \mathbf{m} \circ f_i$, i = 1, 2? For this purpose we have to look for a pseudomultiplication \odot on [0, 1] with some "convenient" properties. Then we will expect \mathbf{m} in the following

Mesiar

form: for a $p \in \mathscr{L}$, one has

$$\mathbf{m}(p) = (\mathbf{m}_1(a_1) \odot \mathbf{m}_2(b_1)) \oplus \cdots \oplus (\mathbf{m}_1(a_n) \odot \mathbf{m}_2(b_n))$$

Let us denote $\mathbf{I}_1 = \{\mathbf{m}_1(a); a \in \mathbf{B}\}$ and $\mathbf{I}_2 = \{\mathbf{m}_2(b); b \in \mathbf{L}\}$. Then **m** can be a \oplus -state only if \odot fulfills the following:

- (1) $x \odot 1 = x$ for any $x \in I_1$ and $1 \odot z = z$ for any $z \in I_2$.
- (2) $(x \oplus y) \odot z = (x \odot z) \oplus (y \odot z)$ and $x \odot (w \oplus z) = (x \odot w) \oplus (x \odot z)$ for any $x, y \in \mathbf{I}_1$ and $z, w \in \mathbf{I}_2$ such that $x = \mathbf{m}_1(a_x)$ and $y = \mathbf{m}_1(a_y)$, $a_x \perp a_y$, and $z = \mathbf{m}_2(b_z)$, $w = \mathbf{m}_2(b_2)$, $b_z \perp b_w$. (3) $x \odot z = 0$ for $x \in \mathbf{I}_1$, $z \in \mathbf{I}_2$ iff x = 0 or z = 0.

If **m** is a pseudoadditive state of type (SS), (NSP), or (PS), any x, y, z, w from the open unit interval may occur in (2) in general. However, if **m** is of type (NSA), the situation is rather different: let g be a generator of \oplus ; then only x, y, z, w fulfilling

$$g(x) + g(y) \le 1$$
 and $g(z) + g(w) \le 1$

may occur in (2). These facts together with some other natural requirements lead to the following definition.

Definition 3. Let \oplus be a pseudoaddition on [0, 1]. A binary operation \odot on [0, 1] will be called a pseudomultiplication corresponding (*A*-corresponding) to \oplus if it satisfies the following:

- (M1) 1 is both the left and the right unit, i.e., $x \odot 1 = x$ and $1 \odot z = z$ for any $x, z \in [0, 1]$.
- (M2) \oplus is distributive with respect to \odot , i.e.,

$$(x \oplus y) \odot (z \oplus w) = (x \odot z) \oplus (x \odot w) \oplus (y \odot z) \oplus (y \odot w)$$

for any x, y, z, w \equiv [0, 1]

(M3) $x \odot z = 0$ iff x = 0 or x = 0.

(M4) \odot is nondecreasing in both components.

(M5) \odot is continuous.

The A-correspondence of \odot to \oplus is defined only for nilpotent pseudoadditions \oplus (with a generator g). We replace only (M2) by (M2A), where the restricted distributivity is required, i.e., we deal only with x, y, z, w from the unit interval satisfying $g(x) + g(y) \le 1$ and $g(z) + g(w) \le 1$.

Theorem 3. Let \oplus be a pseudoaddition and let \odot be a pseudomultiplication corresponding to \oplus (*A*-corresponding to \oplus). Let **B** be a Boolean algebra and let **L** be a logic. Let \mathbf{m}_1 be a \oplus -state on **B** of some type and

1938

let \mathbf{m}_2 be a \oplus -state on L of the same type as \mathbf{m}_1 . then

$$\mathbf{m}(p) = (\mathbf{m}_1(a_1) \odot \mathbf{m}_2(b_1)) \oplus \cdots \oplus (\mathbf{m}_1(a_n) \odot (\mathbf{m}_2(b_n)), \qquad p \in \mathscr{L}$$

defines a \oplus -state on \mathscr{L} (of the same type as \mathbf{m}_1 and \mathbf{m}_2) such that $\mathbf{m}_i = \mathbf{m} \circ f_i$, i = 1, 2.

The proof of the previous theorem is an easy consequence of Definition 3. Note only that in the case of \oplus -states of type (NSA) we have to deal with an *A*-corresponding pseudomultiplication \odot .

Lemma 4. Let \oplus be a strict or a nilpotent pseudoaddition. Then there is no pseudomultiplication \odot corresponding to \oplus .

Proof. Let \odot be a pseudomultiplication corresponding to \oplus . Then for any $z \in]0, 1[, x_n = 1 - 1/n, n = 1, 2, ..., one has <math>\lim x_n \odot z = 1 \odot z = z$. Further, $x_n \oplus x_n < 1$ implies

$$(x_n \oplus x_n) \odot z = (x_n \odot z) \oplus (x_n \odot z) \le 1 \odot z = z$$

and consequently $z \oplus z \le z$. But this is a contradiction with the Archimedean property of \oplus claiming $z \oplus z > z$ for any nontrivial z.

Example 3. Let \oplus be a nilpotent pseudoaddition with generator g. Put

$$x \odot z = g^{-1}(g(x) \cdot g(z))$$

for any $x, z \in [0, 1]$. Then \odot is a pseudomultiplication A-corresponding to \oplus .

Remark 2. Let \oplus be a nilpotent pseudoaddition with generator g. Let **B** be a Boolean algebra and let \mathbf{m}_1 be an (NSA)-type \oplus -state on **B**. Let **L** be a logic and let \mathbf{m}_2 be an (NSA)-type \oplus -state on **L**. Let \odot be a pseudomultiplication introduced in Example 3. By Theorem 2, there is a \oplus -state **m** on the Pták sum \mathscr{L} induced by \mathbf{m}_1 and \mathbf{m}_2 . We get

$$\mathbf{m}(p) = g^{-1} \left(\sum_{i=1}^{n} g(\mathbf{m}_1(a_1)) \cdot g(\mathbf{m}_2(b_1)) \right) \quad \text{for} \quad p \in \mathscr{L}$$

Following Lemma 2, we see that this situation corresponds (up to the transformation g) to the situation dealing with classical states.

Example 4. Let h, q be any strict increasing continuous bijections from the unit interval into the unit interval such that $h(x) \le x, q(x) \le x$ for any $x \in [0, 1]$. Put

$$x \bigoplus_{1} z = \max\{h(x) \cdot z; x \cdot q(z)\}$$
$$x \bigoplus_{2} z = \max\{\min\{h(x), z\}; \min\{x, q(z)\}\}$$

for any $x, z \in [0, 1]$. Then both \bigcirc_1 and \bigcirc_2 are pseudomultiplications corresponding to \checkmark which may not be commutative.

Remark 3. Let h = q in Example 4 be the identity on [0, 1], i.e.,

 $x \bigoplus_{1} z = x \cdot z$ and $x \bigoplus_{2} z = \min\{x, z\}$

Let \mathbf{m}_1 be a possibility state on a Boolean algebra \mathbf{B} and let \mathbf{m}_2 be a possibility state on a logic \mathbf{L} . Let us define, for any $p \in \mathscr{L} = \mathbf{B} + \mathbf{L}$,

$$\mathbf{m}(p) = \max\{\mathbf{m}_1(a_i) \cdot \mathbf{m}_2(b_i); i = 1, 2, \dots, n\}$$
$$\mathbf{M}(p) = \max\{\min\{\mathbf{m}_1(a_i), \mathbf{m}_2(b_i)\}; i = 1, 2, \dots, n\}$$

Then both **m** and **M** are possibility states on \mathscr{L} such that $\mathbf{m} \circ f_i = \mathbf{M} \circ f_i = \mathbf{m}_i$, i = 1, 2. Note that **m** is similar to the Shilkret (1971) integral and **M** to the Sugeno (1974) integral for possibility measures.

REFERENCES

- Beltrametti, E. G., and Cassinelli, G. (1981). The Logic of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.
- Butnariu, D., and Klement, E. P. (1991). Triangular norm-based measures and their Markovkernel representation, Journal of Mathematical Analysis and Its Applications, 162, 111– 143.
- Janiš, V., and Riečanová, Z. (1992). Completeness in sums of Boolean algebras and logics, International Journal of Theoretical Physics, 31(9), 119-127.
- Klement, E. P., and Weber, S. (1992). Generalized measures, Fuzzy Sets and Systems, 40, 375-394.
- Ling, C. H. (1965). Representation of associative functions, *Publicationes Mathematicae Debrecen*, 12, 189-212.
- Pták, P. (1986). Summing of Boolean algebras and logics, *Demonstratio Mathematica*, **19**(2), 349–357.
- Riečanová, Z. (1982). About σ -additive and σ -maxitive measures, *Mathematica Slovaca*, **32**(4), 389–395.

Schweizer, B., and Sklar, A. (1983). Probabilistic Metric Spaces, North Holland, Amsterdam.

- Shilkret, N. (1971). Maxitive measure and integration, *Indagationes Mathematicae*, **33**, 109-116.
- Sugeno, M. (1974). Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology.
- Sugeno, M., and Murofushi, T. (1987). Pseudo-additive measures and integrals, Journal of Mathematical Analysis and Its Applications, 122, 197-222.
- Varadarajan, V. S. (1968). Geometry of Quantum Theory, Van Nostrand, New York.
- Weber, S. (1984). ⊥-decomposable measures and integrals for Archimedean *t*-conorms ⊥, *Journal of Mathematical Analysis and Its Applications*, **101**, 114–138.
- Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility, *Fuzzy Sets and Systems*, 1, 321-327.